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The ordering temperature of a quasi-one-dimensional system, consisting of weakly interacting quantum
spin-1/2 chains with antiferromagnetic spin-frustrating couplings �or zigzag ladder�, is calculated. The results
show that a quantum critical point between two phases of the one-dimensional subsystem plays a crucial role.
If the one-dimensional subsystem is in the antiferromagneticlike phase in the ground state, similar to the phase
of a spin chain without frustration, weak couplings yield magnetic ordering of the Néel type. For intrachain
spin-frustrating interactions larger than the critical one �at which the quantum phase transition takes place�, the
quasi-one-dimensional spin system manifests a spiral magnetic incommensurate ordering. The obtained results
of our quantum theory are compared with the quasiclassical approximations. The calculated features of mag-
netic ordering are expected to be generic for weakly-coupled quantum spin chains with gapless excitations and
spin-frustrating nearest- and next-nearest-neighbor interactions.
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The interest in quasi-one-dimensional �quasi-1D� quan-
tum spin systems has grown considerably during the last
decades. The characteristic feature of quasi-1D magnets is
the strong spin-spin interaction along one space direction,
much stronger than the couplings along all other directions.
The interest is motivated, on the one hand, by the progress in
preparation of substances with well-defined 1D subsystems.
Another reason for studying quasi-1D spin systems is the
possibility to compare experimental data with results of non-
perturbative theories for 1D models. Also, such systems of-
ten manifest quantum phase transitions that take place in the
ground state and which are governed by other parameters
than the temperature, such as external magnetic field, pres-
sure, concentration of impurities �internal pressure�, etc.
From the experimental viewpoint, quasi-1D spin-1/2 systems
differ from other magnets due to special features in the be-
havior of their characteristics. For example, the temperature
dependence of the magnetic susceptibility and the specific
heat of quasi-1D spin systems with dominant nearest-
neighbor �NN� interactions reveal maxima �in a small exter-
nal magnetic field at temperatures of the order of the ex-
change coupling constant along the distinguished direction�.1
For spin systems, which 1D subsystems have a gapless spec-
trum of low-lying excitations at temperatures, much lower
than the temperature of the maximum of the T dependence of
the susceptibility, the latter and the specific heat often mani-
fest peculiarities, characteristic for phase transitions to low-
temperature magnetically ordered states at critical tempera-
tures.

Also, a great attention has been recently given to spin
systems with a spin frustration. For most of antiferromag-
netic �AF� systems the ground state corresponds to Néel-type
configurations. The standard quasiclassical description of AF
systems uses quantization of small deviations of vectors of
magnetizations �magnetic order parameters� of AF sublat-
tices from their steady-state configuration. However, such a
description of AF systems can be used for bipartite magnetic

structures. For AF systems with a spin frustration the com-
peting interactions produce a very high degeneracy of such
steady-state configurations. Therefore, in most cases it is
hopeless to use the approximation of magnetic sublattices.
From the theoretical viewpoint the situation becomes even
worse in quasi-1D spin systems with a spin frustration. For
those systems quantum fluctuations are enhanced due to pe-
culiarities in the 1D density of states. This is why, according
to the famous Mermin-Wagner theorem,2 1D spin systems
with short-range interactions cannot have any magnetic or-
dering even at T=0. Thus, approximate methods of theoret-
ical physics often produce significant errors in the descrip-
tion of such systems. Hence, it is necessary to study them
nonperturbatively, better exactly, which is, fortunately, pos-
sible for few cases for 1D quantum spin systems. Probably
one of the simplest and most known examples of a quantum
spin system with a spin frustration is the Heisenberg spin-1/2
chain with AF NN and AF next-nearest-neighbor �NNN� in-
teractions. The Hamiltonian of such a model can be written
as

HNNN = J1�
n

SnSn+1 + J2�
n

SnSn+2, �1�

where J1 and J2 are the couplings between NN and NNN,
respectively �here we consider only the case with an even
number of spins N�. Such a system is equivalent to a
zigzag spin ladder with obvious renotation of indices. The
system with Hamiltonian �1� is, obviously, spin frustrated.
Several limiting cases are known exactly. Namely, for
J2=0 �or for J1=0� Hamiltonian �1� is reduced to the
Hamiltonian of one �or two decoupled� Heisenberg AF spin-
1/2 chain�s�. The ground state for those cases is a nondegen-
erate singlet, without long-range orderings, and the low-
energy excitations are gapless spinons.1 The other limiting
case, for which the ground state is known exactly, is the
so-called Majumdar-Ghosh point, J1=2J2.3 In that case the
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Hamiltonian of the zigzag spin ladder can be rewritten as
HNNN= �J1 /4��n�Sn+Sn+1+Sn+2�2−9N /4. The ground state
is given by two degenerate singlets of the resonance valence
bond type, without long-range ordering, and the low-lying
excitations are gapped. For other values of the coupling con-
stants it is, unfortunately, impossible to obtain exact answers.
Nevertheless, an approximate bosonization description and
numerical calculations suggest that there is no long-range
magnetic ordering in the system and that for
J2�0.2411¯J1 a spin gap is opened for the low-lying
excitations.4 A quasiclassical approximation of the model
yields the following. If one replaces the spin operators by
classical vectors, two steady-state configurations are pos-
sible. The first one is the period 2 commensurate and
collinear AF Néel configuration, stable for J1�4J2. The
second one, stable for J1�4J2, is a noncollinear incommen-
surate spiral magnetic structure with the pitch angle cos �
=−J1 /4J2. Such a description implies a long-range magnetic
order. This means that it might be approximately valid for,
e.g., a quasi-1D spin system, consisting of weakly-coupled
1D spin chains with NN and NNN AF interactions at tem-
peratures lower than the ordering temperature. However, for
quasi-1D spin systems with a spin gap �sp for low-energy
excitations of their 1D subsystems, a weak interchain cou-
pling, as a rule, does not produce a magnetic ordering.5 �This
is plausible at least for spin systems with isotropic exchange
interactions: the exponential decay of the long-range spin-
spin-correlation function �exp�−n /�� with a finite coherence
length �=�v /	�sp, where v is the Fermi velocity of the low-
lying spin excitations, conflicts with the magnetic order re-
quiring asymptotically nondecaying spin-spin-correlation
functions.�

On the other hand, it is clear that spin frustration in a 1D
subsystem has to yield features in transitions to possible
magnetically ordered state for a quasi-1D system. Moreover,
as follows from Ref. 6 �see also Ref. 7� despite the fact that
for most of studied compounds exchange constants satisfy
the condition J2�0.2411¯J1, the spin gap was not con-
firmed experimentally. To describe such experimental situa-
tions �i.e., quasi-1D AF spin systems with spin frustration of
intrachain interactions without a spin gap and with a weak
interchain coupling�, we consider another model, the Hamil-
tonian of which consists of HNNN with multispin interaction.
Such a model is known to have gapless low-energy excita-
tions. Those multispin interactions do not change the spin
frustration property from the classical viewpoint.8 The ad-
vantage of the proposed model is the exact integrability: The
model permits an exact solution by means of the Bethe’s
ansatz. We do not state here, naturally, that the model de-
scribes all features of the materials of current experimental
interest.6 However, many properties of the model are similar
to what was observed in Ref. 6. At least, for this model the
low-lying excitations are gapless. Hence, from this view-
point, they qualitatively agree with the data of experiments,
unlike the model with the Hamiltonian HNNN. Multiple spin-
exchange interactions are often present in oxides of transi-
tion metals, where a direct exchange between magnetic ions
is complimented by a superexchange between magnetic ions
via nonmagnetic ones.9 Models with multispin interactions
are believed to be closer to real quasi-1D magnets compared

to standard ones with only NN spin couplings.9 Multispin-
exchange models were introduced by Thouless10 already in
1965. Later similar models were used to study some
cuprates11 and spin ladders.12 For the consistent explanation
of several experiments13 by means of inelastic neutron scat-
tering, optical conductivity, and nuclear-magnetic resonance,
one needs to account for relatively large values of NNN spin-
spin interactions and multispin interactions between four
neighboring sites of the spin ladder �the so-called ring ex-
change�. Similar four-spin interactions were used recently in
the theory of two-dimensional �2D� quantum spin systems,
where they regulate the quantum phase transition between
the Néel-type ground state and the resonance valence bond
solid one.14 The Hamiltonian of the 1D subsystem of the
quasi-1D model, studied in our work, has the form

H1D = HNNN + J4�
n

��Sn−1Sn+1��SnSn+2�

− �Sn−1Sn+2��SnSn+1�� . �2�

The model is also spin frustrated. The classical counterpart
of the model �if one replaces the spin operators by classical
vectors� reveals a long-range magnetic ordering with a Néel
steady-state configuration or with a spiral magnetic structure,
where the four-spin ring exchange renormalizes the spiral
pitch angle as cos �=−2J1 / �8J2−J4�. However, quantum
properties of the model with the Hamiltonian H1D differ
from the one with HNNN in a much more drastic way than of
their classical counterparts. This can be seen from the exact
solution �the exactly solvable model was introduced in Ref.
15�, which is known for the parametrization of coupling con-
stants J1=J�1−x�, J2=Jx /2, and J4=2Jx for any J and x �in
what follows we shall consider J�0 and x�0�. For x=0 the
model describes the Heisenberg spin-1/2 AF chain. As one
can see from exact results, the high degeneracy of low-
energy states, caused by the spin frustration of NN and NNN
interactions, is removed by adding the ring exchange, which
is also spin frustrated. According to the exactly known prop-
erties, the ground state of the model �Eq. �2�� depends on the
values of the coupling constant x and an external magnetic
field H.16 For large values of H the model is in the spin-
saturated �ferromagnetic� phase. This phase has a trivial
long-range magnetic order and gapped low-lying excitations.
It is divided from other phases by the line of the second-
order quantum phase transition. For low values of x and H
the model is in the phase, which behavior is similar in prop-
erties to the phase of the Heisenberg spin-1/2 AF chain in a
weak magnetic field.1 Note that the model is in this phase for
x�xcr=4 /	2 even at H=0. At xcr a second-order quantum
phase transition takes place. For x�xcr and H=0 the model
reveals an incommensurate ordering with nonzero spontane-
ous magnetization. For nonzero values of H and large
enough values of x the model is in the incommensurate mag-
netic phase with nonzero weak magnetization.16 The degen-
eracy in the direction of the spontaneous magnetization can
be removed if one first puts the system into an external mag-
netic field and, then, removes the field. These two phases are
divided from each other by the line of the second-order
quantum phase transition �quantum critical point�.
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Figure 1 shows the ground-state phase diagram of the
one-dimensional integrable model. The mentioned quantum
phase transitions can be observed in the temperature behav-
ior of thermodynamic characteristics of the model, such as
the magnetic susceptibility and the specific heat, which were
also calculated exactly.17

The goal of our present study is to find how the weak
coupling between frustrated spin chains can produce mag-
netic orderings and what are specific features of such order-
ings. According to the above, one can suppose two different
types of low-temperature magnetic ordering in the quasi-1D
system under consideration. For the first one, the Néel order-
ing, one can write the magnetization of the nth site, e.g., as
Mn=Mez+ �−1�nmNex, where ex,z are the unit vectors in the x
or z directions, M is the average magnetization, and mN is the
staggered magnetization in the direction perpendicular to the
external field. Another possibility is the three-dimensional
�3D� generalization of the ground-state incommensurate
phase of the 1D subsystem, the spiral incommensurate state
with the magnetization of the nth site, written as Mn=Mez
+cos�Qn�mspez, where msp is the modulated component of
the z projection of the magnetization around the average
magnetization M and Q=	�1−2M� is the wave vector of the
1D modulated structure.

As usually, we study the weak interchain coupling J� in
the mean-field approximation. In that approximation in the
Néel phase we can write the mean-field Hamiltonian of the
1D subsystem as

HN
mf = H1D − �H − zJ�M��

n

Sn
z − hN�

n

�− 1�nSn
x + const,

�3�

where hN=zJ�mN and z is the coordination number. For the
spiral phase the mean-field Hamiltonian is

Hsp
mf = H1D − �H − zJ�M��

n

Sn
z − hsp�

n

cos�Qn�Sn
z + const,

�4�

where hsp=zJ�msp. Renormalization grouplike approach1 im-
plies that both hN and hsp are relevant perturbations. They

generate spin gaps �EN�hN
2/�4−
� and �Esp�hsp

2
/�4
−1�, re-
spectively, for low-energy excitations. Here 
 is the correla-
tion function exponent �see below�, which determines the
asymptotical behavior of the spin-spin-correlation functions
of the 1D subsystem in the conformal limit.17

The order parameters mN and msp �or hN and hsp� have to
be determined self-consistently. In the mean-field approxi-
mation the corresponding self-consistency equations can be
written as

mN,sp = MN,sp�H,hN,sp,T� , �5�

where MN,sp�H ,hN,sp ,T� is the magnetization per site of the
1D subsystem in the effective field H−MzJ� and hN,sp at the
temperature T. Then the transition temperature to the ordered
state has to be determined from the equation

1 = zJ��N,st,

�N,st = � �MN,st�H,HN,sp,T�
�HN,sp

�
HN,sp→0

. �6�

The nonuniform susceptibilities of the 1D subsystem at low
temperature can be found as

���q,T� = − i�
n
	 dte−iqn�t�
�S��n,t�,S��0,0���T, �7�

where q is the wave vector, �=x ,z, and 
¯�T denotes the
thermal average at the temperature T. Asymptotics of the
correlation functions for an integrable spin chain can be ob-
tained in the conformal field theory limit.1 For the model
with the Hamiltonian H1D it was done in Ref. 17, and we can
write for the ground-state correlation functions,


Sn
zS0

z� � M2 +
B� cos�Qn�

�n2 − �vt�2��z
+ ¯ ,


Sn
xS0

x� � �− 1�n C

�n2 − �vt�2���
+ ¯ , �8�

where v is the Fermi velocity of low-energy excitations, �z
=Z2�1 /2
�, ��=1 /4Z2�
 /2�, Z is the dressed charge of
low-lying excitations, and B� and C are nonuniversal con-
stants. In particular, we see that the symmetry of the ground
state is lower than the symmetry of the Hamiltonian, caused
by the ordering, i.e., for our model one deals with the mani-
festation of the Goldstone theorem. Equation �8� can be ex-
tended for weak nonzero temperatures using the conformal
mapping �n−vt�→ �2v /	T�sinh�	T�n−vt� /v�.1 Then, calcu-
lating susceptibilities according to Eq. �7� �we use the main
approximation� for q=	 for the Néel phase and for q=Q for
the spiral incommensurate phase, we obtain the expressions
for the ordering temperatures,

TN =
v

2	
�C

zJ�

v
sin�	


2
�B2�


4
,
2 − 


2
��1/�2−
�

�9�

and

FIG. 1. The phase diagram H−x of the one-dimensional inte-
grable spin model. At the lines Hs and Hc second-order quantum
phase transitions to the ferromagnetic �spin-saturated� phase and the
ferrimagnetic spiral one, respectively, take place. In the point H
=0 and x=xcr the second-order quantum phase transition takes
place. At the line H=0 for x�xcr the first-order phase transition
takes place.
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Tsp =
v

2	
�B�

zJ�

v
sin� 	

2

�B2� 1

4

,
2
 − 1

2

��
/�2
−1�

,

�10�

where B�x ,y� is the Euler’s beta function. In those expres-
sions the Fermi velocity and the critical exponent 
 �or the
dressed charge Z� can be calculated using the Bethe ansatz
results.17 Then, the question to be answered is which order-
ing temperature, TN or Tsp, is higher for the quasi-1D spin
chain with the spin frustration.

In what follows we limit ourselves with the case H=0 for
simplicity. In this situation the effective Fermi velocity can
be written as v= �	 /2�J�1− �x /xcr��.17 Consider first the
ground-state phase x�xcr for a 1D subsystem, which is simi-
lar to the ground state of the Heisenberg spin-1/2 chain with
only NN AF interactions. In this case we have M =0
and 
=1.17 For this case we can use B�=C�0.2.18 One
can see that in this case �i.e., 
=1� TN=Tsp
= �CzJ� /2	�B2�1 /4,1 /2�. We see that the critical tempera-
ture does not depend on J and x �obviously, any nonzero
magnetic field h�0 or an inclusion of a magnetic anisotropy
will change this result�. To get the J and x dependences even
for H=0 and for the magnetically isotropic case, one has to
include logarithmic corrections,1 reproducing the known re-
sult for x=0,19

TN =
CzJ�

2	
B2�1/4,1/2��ln� 	2J�1 − �x/xcr��

CzJ�B2�1/4,1/2�
� , �11�

which is valid, naturally, when the argument of the logarithm
is larger or equal to 1. Next, let us consider the ground state
of the 1D subsystem for x�xcr, which ground state has a
spontaneous magnetic ordering. This spontaneous magneti-
zation M�x�xcr��0 is connected with holes in the
ground-state distribution of quantum numbers, called rapidi-
ties, which form the Dirac sea of the 1D subsystem.15,17

Those holes appear only for x�xcr.
15–17 Notice that in the

previous case, x�xcr, there are no holes in the Dirac sea, and
the ground-state rapidities can have any value in the
range −� , . . . ,�.15–17 It is impossible to find an analytic
solution for 
 in this case. We see that 
=1+a, with
0�a�amax�1 when 1�x /xcr��. Unfortunately, in this
case we cannot obtain the values of the nonuniversal con-
stants. We can only suppose that they are also of the order of
0.05–0.2.18 It is easy to see that for most of the values of J,
J�, and x the temperature of the transition to the spiral in-
commensurate state for x�xcr is higher than the Néel tem-
perature. In Fig. 2 we plotted TN �lower surface� and Tsp
�upper surface� for J=1, J�=0.01, z=4, and B=C=0.2 as
functions of a and y= �x /xcr�. It turns out that a is a function
of x /xcr also, but, unfortunately, one cannot find this depen-
dence analytically. Note that for a=0 �
=1, x=xcr� both
critical temperatures coincide. The Néel temperature can be
larger than the temperature of the transition to the spiral in-
commensurate phase only in the vicinity of the quantum
phase transition x=xcr for 
 being very large �close to 2,
which seems to be an overestimation �cf. Ref. 15��. For all
other values of x�xcr we get Tsp�TN. Hence, we can con-
clude that for a quasi-1D system, consisting of weakly-

coupled spin-1/2 chains with AF spin-frustrating NN and
NNN interactions and with the four-spin ring exchange, the
low-temperature ordering depends on the behavior of 1D
subsystems. For small values of the NNN interaction, the
quasi-1D system undergoes a transition to the magnetically
ordered AF Néel state. On the other hand, if the exchange
constant of the NNN interactions exceeds the critical value,
at which a quantum phase transition to the incommensurate
state with the weak spontaneous magnetization takes place, a
weak coupling between 1D subsystems produces the transi-
tion to the magnetically ordered incommensurate spiral state.
The ordering temperature in the latter is

Tsp =
J�1 − y�

4
�B�

2zJ�

	J�1 − y�
sin� 	

2�1 + a��
�B2� 1

4�1 + a�
,

1 + 2a

2�1 + a����1+a�/�1+2a�

. �12�

Our quantum analysis qualitatively agrees with the quasiclas-
sical description of the considered system. However, a dif-
ference between the quantum system and its quasiclassical
counterpart exists: In the quantum system magnetic ordering
takes place for J��0 only. We expect analogous expressions
in Eqs. �11� and �12� to be valid also for the other critical
point between a ferromagnetic and a spiral phase, i.e., if
J1�0. In this context, the determination of the magnetic or-
der below their low-temperature phase transitions at few
kelvins for Li2ZrCuO4 and Pb�Cu�SO�4�OH�2�,20 both being
close to that critical point, would be of interest.

We expect that an interchain ferromagnetic interaction21

for x�xcr has to produce a AF low-temperature ordering of a
special type. Namely, we expect low-temperature ordered
phase, which consists of ferromagnetic planes with alternat-
ing magnetizations of planes. On the other hand, for x�xcr, a

FIG. 2. The Néel temperature �the lower surface� and the order-
ing temperature of the transition to the spiral incommensurate phase
for a quasi-1D spin-1/2 chain with the spin frustration, caused by
AF NN, NNN interactions, and the ring exchange as functions of
the deviation of the critical exponent a=1−
 and y=x /xcr, which
shows how close the quantum critical point y=1 is.
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ferromagnetic interchain interaction is expected to produce
ferrimagnetic low-temperature ordering with a nonzero spon-
taneous total magnetization.

Finally, let us consider what happens if one studies the
situation with only NN and NNN couplings, without the ring
exchange. In that case, for J2�0.2411¯J1 the quasi-1D
system undergoes a phase transition to the Néel state due to
weak couplings between chains. For J2�0.2411¯J1, a spin
gap is opened for low-lying excitations of the 1D subsystem,
and the ordering temperature goes to zero. This case seems
to contradict known experiments, in which magnetic order-
ing was observed even for J2�0.2411¯J1.6 Therefore, we
can conclude that for some real compounds with the proper-
ties of quasi-1D spin systems with spin-frustrating interac-
tions in their 1D subsystems, some additional spin-spin in-
teractions, such as the ring exchange, studied in this paper,
probably exist, which close the spin gap and give rise to
magnetic orderings at low temperature.

In summary, the ordering temperature of a quasi-one-
dimensional system, consisting of weakly interacting quan-
tum spin-1/2 chains with antiferromagnetic spin-frustrating
couplings �or zigzag spin ladder�, is calculated. Our results
show that the quantum critical point between the two phases
of the 1D subsystem plays an important role. If the one-
dimensional subsystem is in the ground state in an antiferro-
magneticlike phase, similar to the phase of a spin chain with-
out frustration, weak couplings yield a magnetic ordering of
the Néel type. On the other hand, for intrachain spin-
frustrating interactions larger than the critical one �at which
the quantum phase transition takes place�, an incommensu-
rate spiral magnetic ordering of the quasi-one-dimensional
spin system takes place. The obtained results of the quantum
theory are compared with the quasiclassical approximations.
We expect that the calculated features of the magnetic order-

ing are generic for weakly-coupled quantum spin chains with
gapless excitations and with spin-frustrating nearest- and
next-nearest-neighbor interactions. While up to now we do
not know quasi-one-dimensional systems with NN AF spin
interactions and large AF NNN ones in the spiral phase at
low temperatures �cf. Ref. 6, see, though, Refs. 22 and 23�,
we believe that our results can be used for comparison with
the observed temperatures of magnetic orderings in other
spin-frustrated quasi-1D quantum spin systems

Note added in proof. Recently the predicted spiral order-
ing of Li2ZrCuO4 �Ref. 24� has been confirmed experimen-
tally by 7Li-NMR measurements.25 The derived pitch angle
� amounts 33° �2°. This value corresponds to a ratio
−J2 /J1=0.298 within the framework of the classical relation
for the pitch angle � given below Eq. �2� �provided J4=0�. It
is surprisingly very close to the ratio −J2 /J1=0.3 estimated
from specific heat and susceptibility data analyzed within the
1D-spin-1/2 J1J2-model.24 However, a recent quantum analy-
sis within the coupled cluster method �CCM� in the SUB2-3
approximation for a realistic weak effective antiferromag-
netic inter-chain coupling J��0.1 �J1� reveals a somewhat
larger pitch angle: ��42° for −J2 /J1=0.3 �Ref. 26�. Hence,
other factors such as a sizable exchange anisotropy are ex-
pected to be relevant in this material. Such an anisotropy
may lead to a modification of the classical spiral as well as to
a reduction of quantum fluctuations compared with the iso-
tropic spin model considered here. The corresponding effects
are outside the scope of the present paper.
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